
The Camera Simulator

User Guide

Apatean

- UTCN -

Systems with Microprocessors LABORATORY

CAMERA – CACHE Memory
Illustrate the concepts of CACHE MEMORY with :

(3 mapped schemes)
1. Direct mapped cache

2. Fully Associative cache

3. Set Associative (with m-sets) or n-ways cache

When the user launches one of the 3 applications
for cache memory, the Update Progress field
displays the specifications according to the system
which was modeled in the application

- the size of the cache memory and

the size of the main memory

- the size of pages / slots and of proper blocks

- how the address of the main memory is
partitioned in binary

(answer the questions: WHICH? HOW?)
WHICH? :"Which blocks from the main memory in cache will be mapped?”

HOW? "How the blocks will be arranged in the cache memory?

Cache memory has smaller size(<<) than the main

memory

MAPPING = “the way in which some blocks from the main

memory are chosen to be copied in cache memory”

Introduction

The purpose of using cache memory: to increase the speed with which the CPU access

the information inside the system
=> the cache memory will store the most recent or the most frequent used information
- It is placed closer to CPU (comparing to RAM) and it has higher speed (proved by the memory hierarchy concept)

=> The CPU will receive the requested information more rapidly (being in cache and not in RAM)

One possible problem: the cache memory capacity is much smaller than that of RAM

Example: 64k B cache L1 vs 2GB RAM (main memory)

216 B vs 221 B => 221 / 216 = 25 =32

=> 32 times the cache L1 memory is smaller than main memory !!!

- generally, the cache memory is content-addressable, not by its address like main memory

=> the cache memory is also called CAM-type (content-addressable memory)

- the “content” being verified is in fact a subset of bits (a field) from the data location

from the main memory

- More blocks from the main memory will attempt to the same slot

(many-to-one mapping)

- The tag field will discriminate between them (within a set or within all of them)

The CAMERA simulator

I. CAMERA is a software packet

for the cache memory and

virtual memory

- JAVA coded, belongs to [ref1]

II. Install CAMERA

Using the archive Camera.zip

IIa. Un-archive and double-click

on Camera.jar in order to install

IIa’. or you can follow the installing

instructions from the

user guide from [ref1]

III. Open/start CAMERA

- Any of the 4 applications are

Standalone -> they can be run

independently;

- and they either depend on an external application

Install the CAMERA – skip this step in case you already installed it

Only to CAMERA …

• The following specific attributes are only for the Camera simulator:
– size of the cache: 16 slots* and each slot has 8 “words”**

– size of the main memory : 32 blocks and each block has 8 words

=> in CAMERA the cache is only 2 times smaller: 32*8B/16*8B= 2 times only !!!

• But in a real system they may be different
– Examples :

• in a PC or PC-XT system: there is a 1MB of main memory due to the 20 address lines

• in a PC-AT system: there is 16MB of main memory due to the 24 address lines

• Check with your system by running the cpu-z application how much main
memory and cache L1 is in your system

*We will refer to cache structures as SLOTS and main memory structures as BLOCKS

** word will be the generic term for the addressable content from the memory (which in byte in our case)

Exercise 1: understand how the Camera simulator is working

1. Choose a “Direct Mapped Cache” by pressing the corresponding button.

Select the option “AutoGenerate Add.Ref.Str. ”

a) Analyse the connection between the main memory

(“Memory”) and the cache memory (“Cache”)

(0.1p) a1) Specify what size has the main memory and how it is organised :

How many locations (called generically “words”) can be inside a “Block” ? How are the

blocks numbered ? Follow the contents of the locations . What did you noticed?

(0.1p) a2) Specify the size of the cache memory and how is this organised:

How many words can be inside a “Slot”(block) ? Would all the words from the main

memory fit in the cache memory? How are the slots numbered?

b) Analyse the auto generated sequence, step by step:

b1) Notice how each location (1C on the next figure) is partitioned in fields (“Main

Memory Address” 1Ch=0001 1100b, i.e. tag=0, block=0011, word=100)

(0.1p) b2) Press Next and analyse the message appearing at the “progress update”;

Repeat all the points from b) and explain the cache hits and cache misses values

Address partitioning
Why the memory address is divided in this way ?
(Why the address partitioning is made in this way?)

Or: Why there is a single bit for tag, 4 bits for block and 3 bits for word ?

Answer:

• Because the number of blocks or slots in cache is 16 = 24

=>it needs 4 bits to specify the “block” field

• Because the number of words or locations from each slot in cache is 8 = 23

=>it needs 3 bits to specify the “word” field

(it shows on which position inside of blocks we find the CPU-requested word

- inside the slot)

• The total main memory size gives the number of blocks necessary for a correct
writing of memory address

there are 256 locations in Camera = > memory address is written on 8 bits;

8 – 4 – 3 = 1
 From those 8 bits : 3bits were used to specify the word field,

4 bits for the block field and only 1 bit for tag

Which of those 3 mapping schemes is best ?

• “Best” = efficiency – ensure a higher number of cache hits and

a lower effective access time (EAT)

• The 3 cache mapping schemes illustrate the mapping process starting from the

generation of the memory address to its mapping in cache, inside a slot

• The difference between the 3 schemes:

-a different way of partitioning the address

-cache memory organization

Example: the address 1Ch in an fully associative mapping scheme will be mapped in

set number 3, into any available block (straight) identified by tag: 00, on field: 4

Mapping scheme Its

feature

Cache memory

organization

Address

partition

Example:

1Ch=0001.1100b

Direct Mapped Restrictive Blocks/slots, with

direct link
Tag-bloc-word 00011100b

Fully Associative Permissive Anywhere,

without a link
Tag-word 00011100b

Set Associative 2-

ways or 8-sets

Restrictive-

Permissive

Slot sets ,any slot Tag-set-word 00011100b

1. Direct Mapped Cache

Restrictive :

Each block of memory is mapped to exactly one cache block in a modular fashion. The

problem arises when the block will be overwritten and the previous block will be lost

The tag field is stored with each memory block when it is placed in cache = > the block

can be uniquely identified. When cache is searched for a specific memory block, the

CPU knows exactly where to find the block just by looking at the main memory address

bits.

If we have a scheme with N blocks, the X block will be mapped in the slot Y,
Where Y=X mod N

Example:

If there is a 10 slots cache, the slot number 3 has links with blocks 3,13,23,33,43,...

from the main memory

Once a memory block is copied into a cache slot, a valid bit will be set for this cache

slot for letting the system knows that slot contains valid data.

2. Fully Associative Cache

Fully permissive

Instead of specifying a unique location for each main memory block, we can

look at the opposite extreme: allowing a block of memory to be placed anywhere in

cache. While there are empty blocks in cache, there are no problems.

To implement this mapping scheme, we require associative memory so it can be

searched in parallel => all the tags will be searched in parallel for a faster searching of

data => special hardware, higher costs.

When cache is searched for a specific memory block, the tag field of the main memory

block is compared to all the valid tags in cache and, if a match is found, the block is

found. If there is no match, the memory block needs to be brought into the cache.

When we have Fully Associative scheme and Set Associative scheme, once the cache is

full, a replacement algorithm is used to evict an existing memory block from cache

and place the new memory block instead of the removed one (called “the victim

block”)

There are more possibilities of replacement policies: LRU, LFU, FIFO, random, etc

In CAMERA, the replacement algorithm used is Least Recently Used (LRU)

3. Set Associative Cache

A combination: Restrictive- Permissive

The third mapping scheme is N-way set associative cache mapping and is similar to

direct mapped cache because we use the memory address to map to a cache location.

The difference is that an address maps to a set of cache blocks instead of a single

cache block.

When cache is searched for a specific memory block, the CPU knows to look in a

specific cache set with the help of the main memory address bits. The tag bits then

identify the memory block. A replacement algorithm is needed here too, to determine

the “victim” block that will be removed from cache to make available free space for a

new memory block.

In CAMERA, the replacement algorithm used is the LRU algorithm.

Replacement policy
The chosen replacement policy depends on the locality that will be exploited,

generally it is used temporal locality (in time: the one that was least recently used)

Frequently used policies: LRU, LFU, FIFO, random

A least recently used (LRU) policy type: keeps track of what was used when, which is

expensive if one wants to make sure the algorithm always discards the least recently

used item.
Disadvantage: high complexity – it needs to keep a history of visits per block - slows cache function.

A least frequently used (LFU) policy type: counts how often an item is needed. Those

that are used least often are discarded.
Disadvantage: high complexity - it needs to keep a history of visits per block - slows cache function.

First-in, first-out (FIFO): it’s a popular policy

- It will replace the block which came first, then second, etc.

A policy random type: will remove a random block

Which block will be replaced if we have a miss in

cache ?

Studies: comparison between LRU and random [ref2]

• Easy to notice for Direct Mapped
• Difficult for Set Associative or Fully Associative: Random vs LRU

Associativity: 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

- the smaller the memory size, the higher the percentage,
- the smaller the number of ways, the higher the percentage
- random is weaker than LRU (the percentage is higher)
The best way: LRU with 8- ways and larger cache memory

16

Data passing from one level to another at memory reading

Reg-

isters
L1

Cache
L2

Cache
Main

Mem
Disk

L3

Cache

First, CPU interrogates its registers,

then (if missed) the L1 cache

then (if missed) the L2 cache

then (if missed) the L3 cache,

…

