Systems with Microprocessors LABORATORY

he C@Mera simulator

User Guide

Apatean
- UTCN -

CAMERA - CACHE Memory

Cache memory has smaller size(<<) than the main
memory

MAPPING = “the way in which some blocks from the main
memory are chosen to be copied in

[llustrate the concepts of CACHE MEMORY with :

(3 mapped schemes)
1. Direct mapped cache
2. Fully Associative cache
3. Set Associative (with m-sets) or n-ways cache

When the user launches one of the 3 applications
for cache memory, the Update Progress field
displays the specifications according to the system
which was modeled in the application

the size of the and
the size of the main memory
the size of and of proper blocks

how the address of the main memory is
partitioned in binary

(answer the questions: WHICH? HOW?)

Slot0

Slot 1

WHICH? :"Which blocks from the main memory in cache will be mapped?”5lot 2

HOW? "How the blocks will be arranged in the cache memory?

Slot k

Cache memory

e —— "
0™y

+1

#2
+3

+7. J

[

+0™
+1
#2
+3

+7./
0™
+1
#2
+3

+7./

oS
+1
£
+3

™

+7./

WHICH
ONE?

k<<n

HOW
TO MAP?

Main Memory
——
:% Bloc0
+3
ke +1./
0™
+1 | Bloc1
#2
+3
+L/'
.
L]
L]
_4_0-\'
:% Blocn
+3
- *1.

Introduction

The purpose of using cache memory: to increase the speed with which the CPU access

the information inside the system

=> the cache memory will store the most recent or the most frequent used information

- It is placed closer to CPU (comparing to RAM) and it has higher speed (proved by the memory hierarchy concept)
=> The CPU will receive the requested information more rapidly (being in cache and not in RAM)

One possible problem: the cache memory capacity is much smaller than that of RAM

Example: 64k B cache L1 vs 2GB RAM (main memory)
216Bvs 2?21 B => 221 [216 = 25=32
=> 32 times the 1

- generally, the cache memory is content-addressable, not by its address like main memory
=> the cache memory is also called CAM-type (content-addressable memory)
- the “content” being verified is in fact a subset of bits (a field) from the data location
from the main memory

- More blocks from the main memory will attempt to the same slot
(many-to-one mapping)
- The tag field will discriminate between them (within a set or within all of them)

The CAMERA simulator

Install the CAMERA - skip this step in case you already installed it

|. CAMERA is a software packet
for the cache memory and
virtual memory
- JAVA coded, belongs to [ref1]
II. Install CAMERA
Using the archive Camera.zip
lla. Un-archive and double-click
on Camera.jar in order to install
lla’. oryou can follow the installing
instructions from the
user guide from [ref1]
IIl. Open/start CAMERA
- Any of the 4 applications are
Standalone -> they can be run
independently;

o Direct Mapped Cache

@ Fully Associative Cache

@ 5et Associative Cache

@ Virtual Memory and Paging

About CAMERA

- and they either depend on an external application

Only to CAMERA ...

 The following specific attributes are only for the Camera simulator:
— size of the cache: 16 slots* and each slot has 8 “words”**
— size of the main memory : 32 blocks and each block has 8 words

=> in CAMERA the cache is only 2 times smaller: 32*8B/16*8B= 2 times only !!!

 Butin areal system they may be different

— Examples:
* ina PCor PC-XT system: there is a 1MB of main memory due to the 20 address lines
* in a PC-AT system: there is 16MB of main memory due to the 24 address lines

* Check with your system by running the cpu-z application how much main
memory and cache L1 is in your system

*We will refer to cache structures as SLOTS and main memory structures as BLOCKS
** word will be the generic term for the addressable content from the memory (which in byte in our case)

The cache memory has 128 locations Main memory has 100h locations

8 locations per slot numbered from 00hto FFh =>256 locations
each BLOCK contains 8 locations
' : —————

M Direct Mapped Cache S =3 P
Cache Memory Address Reference String
BlkD L +0 +1 +1 +3 +4 +5 +B 7 | T " :-

Slot O J 100 |B0 WD B0 WY B0 W3 B0 W3 Bl V4 B0 W5 530 VWG 1) W7 Blbckﬂ thE hEK VEIUES

' “"‘;lﬂ” LJIIIEI-[II'E-[I['E-[IITE-[B1W5 |B1 WG |B] Block 1 appearing here

E B2W5 _ |BIW6 B2
i e e
BIK3 %% r Baws |BawWE |BAWT the addresses
L aswn Bﬁ'm B5WS [B5WE [BSW7 of the data
64 |B6WS5 _ |BEWS _ |BBWT ted
| 21 m : m Biws [B7ws |B7we [B7wr7 ;Ttli:?ci.u
BIkS [* W2 JESW3 1GSWY IBOWS IBOWS IBOWE
43 lBawo__ |Bowi | E Iazem BAWS [BIWE [BawWT
50 ainm mum BIOWA [BIOWS |BIOWSE [B10WT
=) % 211 W3 |11 B11WS |B11WE |B11WT
BK? [50 m mzm B12w4 [B12ws [B12wWE |R12WT
= e
msm amm BISW5S |B15WSE |B15W7
Blka 80 B16WS |B16WE |B16WT |
- 4] mmm rm me BI7WS |BITWE [B1I7WT
EIK10 818 B16W4 [B18W5 |B18WE [B1BW?P
— mmmmmm:ri:m! B18Wa4 [B1SWS [B19WE [B19wT
Bik11 [A0 [B2owo |ezo0wi [e20w2 [B20w3 |B20w4 [B20wWs |B20we |B20W7 =
l mmm w3 lBaiwa [e2iws [Batwe [eaiwr | —
BIk12 [BO (B22 W0 | B22W3 |B12W4 |B22W5 |B22WE [B22WT |__ Auto Generate Add. Ref. Str.
B8(B23wW0_|B23wi1 |B23w2 |B23wW3 [B23W4 |[B23WS5 |B23WE |B23WT |
BIK13 [co m:r B24 W3 _|B24Wa_|B24WS |B24 WS _|B24WT L 5% Eoneinie MO0 Ret S5
' et] g: EEEEIEE{EIEEM B25W5 |BI5WS |B25W7 ~Main Memory Address
B26WW3 |B26 B26WS |BIGWE |BIBWT |
D8 m B27 W3 gnm B27 W5 _|BITWE |B2T WT G e T
= E0[B28w0 |B28w1 [B28w2 |B28wW3 [B28Wa4 [B28WS |B2BWE [B28WF | :
slot 15 ES m B 24 ¥ B20W3 |B29Wa |B29WS |BIAWS B29WT Ehﬂ\ﬂr!moﬁltlﬂd Word Bits
Folgsowy le3owi lBaowz 1830w3 1830w 1B30ws 1B30WE IB30wW7
CacheHits O Cachemisses o0 [FEleztwo |e3twi |e3tws |e3tws |estwe |eztws |estwe |e31wr [J8loc31 prock WORD
| 8 Words per Block & . _ .
PROGRESS UPDATE Please generate the Address Reference String. Restart | | Mowr” || Back || OQuit

.T hen click on "Next” to continue,

how the address is
partitioned in binary

Exercise 1: understand how the Camera simulator is working

1. Choose a “Direct Mapped Cache” by pressing the corresponding button.

| =
Select the option “AutoGenerate Add.Ref.Str. ” ____— AutoGenerate Add. Ref. str._| |

Self Generate Add. Ref. 5Sir.

Main Memory Address

a) Analyse the connection between the main memory TAG BLOCK WORD
(“Memory”) and the cache memory (“Cache”)

(0.1p) al) Specify what size has the main memory and how it is organised :

How many locations (called generically “words”) can be inside a “Block” ? How are the
blocks numbered ? Follow the contents of the locations . What did you noticed?

(0.1p) a2) Specify the size of the cache memory and how is this organised:

How many words can be inside a “Slot”(block) ? Would all the words from the main
memory fit in the cache memory? How are the slots numbered?

b) Analyse the auto generated sequence, step by step:

b1) Notice how each location (1C on the next figure) is partitioned in fields (“Main
Memory Address” 1Ch=0001 1100b, i.e. tag=0, , word=100)

(0.1p) b2) Press Next and analyse the message appearing at the “progress update”;
Repeat all the points from b) and explain the cache hits and cache misses values

Cache hddre'ss Reference String
BikO L_ +[| +1 +32 +3 +4 +5 5 +T A1 :
ikt 00 BOWD |BOW1 [BOW2 [BOW3 |BOW4 [BOWS |BOWE |BOW? 65
oslgiwo [B1wn [Biw2 [B1wa |B1wd [BIiws [BIWE |B1W7 :
< 10(gzwo_ |ezwi [B2w2 [Bzwa |Bawd [B2ws |Bawe |BZWT (ED
18(Bawo |B3w1 [B3w2 [B3w3 |B3wd4 [B3IWS5 |BIWE [BIWT Fo
BIk3 20 Bawn_ leawi1l [Baw2 |B4w3 |Baws [BawWS5S |BAWE |Baw7 93
20B5wW0 Bsw1 [B5W2 [B5wa3 |BSw4 [BSWS5 |BSWE |BSWT
Blke T 30 Bewo |eew1 [BAwW2 |BEw3 |REw4 [BEWS |BEWE |BEWT
- 3@prwo lerwi |Brw2 |Brwa |Brw4a [BTwS |BTWE |B7W7
ks [40(Bew0 |eeww1 |BewW2 (Bew3 |BBw4 [BEWS |BAWE |BBWT ra
a8 [pown_ |eow [pow2 [Baw3 |powd [Bows |Bowe |BOWT
BIke [50 |Bp1ow0 [B10wW1 [B10wW2 |B10W3 |B10W4 [B10WS [B10WSE |BI0WT
58 lB1iwn [B11wil [Brawe [Briws [B11ws [B1iws [B11we [B11w7
BIkF [] -* 60(p12wo B12wr |B12w2 [B12w3 [B12w4 [B12WsS [B12W6 [B12'W7
\H 68 |B13w0 [B13w1 [B13w2 [|B13w3 [B13w4 [B13W5 [B13W6 |B13W7
BIkE [] - Brawo |B1awil [B1aw2 |B1aws [B1aws [B1aws [B1aws [Br4w?
. 7M1 swo le1swi [B1sw2 [B1sw3 [B1swa [B1sws |B15WE [B15WT
BIk3 [Y 80 [BNwo [B16wi1 [Biew2 [B16w3 |B16ws [B16ws [B16WSE [B16WT
N 88 Bt% B17wi [B17wz2 B17w3 |B17wa [B17ws [B17wWe [B17W7
BIK10 [| N\ 90 |B18 BI8W1 [B18w2 [B18wW3 [B18w4 [B18WS |B18WE [B18WT
\ 98 [B1owin NB19w1 [B1aw2 |B19w3 |B10wWs [B10wWS5 [B19WE |B19WT
BIk11 [| <] | A0 [B20 W0 Wi |B20W2 [B20W3 [B20W4 |B20WS |B20WE |B20WT o=
A8 [B21 wo |82 B21w2 |B21w3 [B21 w4 [B21wWS5 [B21wW6 |B21 W7 - m——
BIk12 (g o1 1481 dp1 1 et de 11 \Bu B22wWo [B22 B22W2 |B22W3 [B22W4 [B22WS |B22W6 |B22WT7 (L s S AR YA TR AT
WWOJWWT V213 WA WSIWEWT B23W0 |B23wWi1\|B23wW2 |B23w3 |B23W4 [B23W5 |B23WE |B23WT Self Generate Add. Rel. Ste
Blk13 [} coiBza 'wo _|B24 wi 4w2 [B24wW3 |B24w4 [B24W5 |BI4WE |B24 W7 :
celpzswie _[B25wi1 [B2swz2 |B25Ww3 |B25WwW4 [B25W5 |B25W6 |B25 W7 Main Memory Address
Blkid [| Do0|B2 B26'W1_[B26 B26'W3 |B26W4 |BIEWS |B26WE |B26 W7 0 0011 100
a5 [23 EET% 27wt |B27 B27W3 |B27wWd4 [B27WS5 |B27WE |B27 W7 / TAG B OCK WORD
B28 B2e'y1 |B2ew2 1928WW3 |B28W4 |B28WS |BIBWE |B28'W7
E8|p2ow0 ym29vwy: |B2aw2 |Bdawa |B2ow4 [B2ows |B2ows |B2owT [Memory Block and Word Bits
FO |B30 W0 Wi B30w2 B3 B304 [B30WS5 |BI0OWE |B30WT 4 00011 100
CacheHits 0 Cache Misses 4 Fe g3t wo |83 [B21 w2 [B31 Batwe [B3tws [B31ws [B31 W, BLOCK WORD

Now that the required memory block i
[
PROGRESS UPDATE 1. The cache block has a tag associated with it and the tag, as i A | estart I Next | | Back Quit

\\ ‘.
Each location {(1C on the figure) is divided in fields I
“Main memory address”lﬂh=lm1 l-b, => tag=§§ block=0011, word e

Address partitioning

Why the memory address is divided in this way ?
(Why the address partitioning is made in this way?)

Or: Why there is a single bit for tag, and 3 bits for word ?

Answer:
* Because the number of blocks or slots in cache is 16 = 24
=>it needs 4 bits to specify the ” field
* Because the number of words or locations from each slot in cache is 8 = 23
=>it needs 3 bits to specify the “word” field
(it shows on which position inside of blocks we find the CPU-requested word
- inside the slot)

* The total main memory size gives the number of blocks necessary for a correct
writing of memory address

there are 256 locations in Camera = > memory address is written on 8 bits;
8-1-3=1
= From those 8 bits : 3bits were used to specify the word field,
for the field and only 1 bit for tag

Which of those 3 mapping schemes is best ?

 “Best” = efficiency — ensure a higher number of cache hits and
a lower effective access time (EAT)
* The 3 cache mapping schemes illustrate the mapping process starting from the
generation of the memory address to its mapping in cache, inside a slot
* The difference between the 3 schemes:
-a different way of partitioning the address
-cache memory organization

Example: the address 1Ch in an fully associative mapping scheme will be mapped in
set number 3, into any available block (straight) identified by tag: 00, on field: 4

Mapping scheme Its Cache memory Address Example:
feature organization partition 1Ch=0001.1100b
Direct Mapped | Restrictive | Blocks/slots, with | Tag- o c-word | 0 100b
direct link
Fully Associative | Permissive Anywhere, Tag-word 00011100b

without a link

Set Associative 2- | Restrictive- | Slotsets ,anyslot | Tag-- - -word 00011100b
ways or 8-sets Permissive

1. Direct Mapped Cache

Restrictive :

Each block of memory is mapped to exactly one cache block in a modular fashion. The
problem arises when the block will be overwritten and the previous block will be lost
The tag field is stored with each memory block when it is placed in cache = > the block
can be uniquely identified. When cache is searched for a specific memory block, the
CPU knows exactly where to find the block just by looking at the main memory address
bits.

If we have a scheme with N blocks, the X block will be mapped in the slot Y,

Where Y=X mod N

Example:
If there is a 10 slots cache, the slot number 3 has links with blocks 3,13,23,33,43,...
from the main memory

Once a memory block is copied into a cache slot, a valid bit will be set for this cache
slot for letting the system knows that slot contains valid data.

2. Fully Associative Cache

Fully permissive

Instead of specifying a unique location for each main memory block, we can
look at the opposite extreme: allowing a block of memory to be placed anywhere in
cache. While there are empty blocks in cache, there are no problems.
To implement this mapping scheme, we require associative memory so it can be
searched in parallel => all the tags will be searched in parallel for a faster searching of
data => special hardware, higher costs.
When cache is searched for a specific memory block, the tag field of the main memory
block is compared to all the valid tags in cache and, if a match is found, the block is
found. If there is no match, the memory block needs to be brought into the cache.
When we have Fully Associative scheme and Set Associative scheme, once the cache is
full, a replacement algorithm is used to evict an existing memory block from cache
and place the new memory block instead of the removed one (called “the victim
block”)

There are more possibilities of replacement policies: LRU, LFU, FIFO, random, etc
In CAMERA, the replacement algorithm used is Least Recently Used (LRU)

3. Set Associative Cache

A combination: Restrictive- Permissive

The third mapping scheme is N-way set associative cache mapping and is similar to
direct mapped cache because we use the memory address to map to a cache location.
The difference is that an address maps to a set of cache blocks instead of a single
cache block.

When cache is searched for a specific memory block, the CPU knows to look in a
specific cache set with the help of the main memory address bits. The tag bits then
identify the memory block. A replacement algorithm is needed here too, to determine
the “victim” block that will be removed from cache to make available free space for a
new memory block.

In CAMERA, the replacement algorithm used is the LRU algorithm.

Replacement policy

The chosen replacement policy depends on the locality that will be exploited,
generally it is used temporal locality (in time: the one that was least recently used)

Frequently used policies: LRU, LFU, FIFO, random
A least recently used (LRU) policy type: keeps track of what was used when, which is

expensive if one wants to make sure the algorithm always discards the least recently

used item.
Disadvantage: high complexity — it needs to keep a history of visits per block - slows cache function.

A least frequently used (LFU) policy type: counts how often an item is needed. Those

that are used least often are discarded.
Disadvantage: high complexity - it needs to keep a history of visits per block - slows cache function.

First-in, first-out (FIFO): it’s a popular policy
- It will replace the block which came first, then second, etc.
A policy random type: will remove a random block

Which block will be replaced if we have a miss in
cache ?

studies: cOmMparison between LRU and random [ref2]

* Easy to notice for Direct Mapped
* Difficult for Set Associative or Fully Associative: Random vs LRU

Associativity: 2-way 4-way 8-way

Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

- the smaller the memory size, the higher the percentage,
- the smaller the number of ways, the higher the percentage
- random is weaker than LRU (the percentage is higher)

The best way: LRU with 8- ways and larger cache memory

Data passing from one level to another at memory readin

Reg- || L1 L2 L3 Main

o — o
isters Cache Cache Cache - Disk

First, CPU interrogates its registers,
then (if missed) the L1 cache
then (if missed) the L2 cache
then (if missed) the L3 cache,

16

